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1Õf a noise from self-organized critical models with uniform driving

Jörn Davidsen* and Heinz Georg Schuster
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universita¨t, Olshausenstraße 40, 24118 Kiel, Germany

~Received 21 June 2000!

Using the well-known Olami-Feder-Christensen model as our paradigm, we show how to modify uniform
driven self-organized critical models to generate 1/f a noise. This model can reproduce all the main features of
1/f a noise:~1! a is close to one and does not depend on the dimension of the system.~2! The 1/f a behavior
is found for very low frequencies.~3! The spatial correlations do not obey a power law. That proves that
spatially extended systems based on activation-deactivation processes do not have to be point-driven to pro-
duce 1/f a noise. The essential ingredient is a local memory of the activation-deactivation process.

PACS number~s!: 05.40.Ca, 05.65.1b, 05.45.Ra, 02.50.2r
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A time signalX(t) with zero mean is called 1/f a noise or
1/f a signal if its power spectrumS( f ) is proportional to 1/f a

at low frequenciesf with a'1. Here, the power spectrum
defined as the amplitude squared of the Fourier-transfor
signal, i.e.,

S~ f !5 lim
T→`

1

2T U E
2T

T

dtX~ t !e2 i2p f tU2

. ~1!

According to the Wiener-Khinchin theorem,S( f ) is the Fou-
rier transform of the autocorrelation functionC(t) which is
defined as

C~t!5 lim
T→`

1

2TE2T

T

dtX~ t1t!X~ t !. ~2!

Consequently, it follows for the autocorrelation function o
signal with S( f )}1/f a and 0,a,1 that C(t)}utua21.
Hence, a 1/f a signal with a close to but smaller than 1 i
related to~statistical! long-time correlations which is the rea
son why 1/f a noise is considered to be a particularly inte
esting phenomenona priori. Moreover, the omnipresence o
1/f a noise in nature is one of the oldest puzzles in conte
porary physics. It appears in a variety of systems from ph
ics, geophysics, astrophysics, technology, sociology, and
ology. Specific examples are the flow of the river Nile@1#,
sunspot activity@2#, pressure variations in the air caused
music and speech@3#, human coordination@4#, and neuronal
spike trains@5#. One of the most famous examples is t
measurement of the voltage dropV on a resistor of resistanc
R through which a currentI is flowing. The power spectrum
of the fluctuations around the expected valueV5RI clearly
shows a 1/f behavior over many decades in the frequen
domain@6#.

It is natural to expect that there might be a general p
ciple which explains the occurrence of 1/f a signals in many
of these different systems. However, no generally accep
explanation of the ubiquity of 1/f a noise has been propose
yet. Indeed, it is possible to find in the literature somead hoc
formulas and theories, but most of them are based on unv
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fied assumptions, or they catch a glimpse of the physics o
of some particular system, therefore missing to address
widespread occurrence of the phenomenon~see Refs.@6,7#
and references therein!.

In 1987 Bak, Tang, and Wiesenfeld~BTW! introduced the
notion of self-organized criticality~SOC! to explain the uni-
versality of 1/f a noise@8#. SOC systems are nonequilibrium
systems driven by their own dynamics to a—in a statisti
sense—stable state~self-organization!. Fluctuations around
this state, so-called avalanches, are characterized by po
law distributions in time and space~criticality! implying
long-range correlations~for a recent review on SOC se
Refs. @9,10#!. This automatically leads to a power spectr
density exhibiting a 1/f a decay. However, this approach ha
several shortcomings: First and most important, there is
evidence for power-law space correlations in most syste
exhibiting 1/f a noise @11#. This already means that the no
tion of self-organized criticality and 1/f a noise is mutually
exclusive in most cases. Second,a is seldom close to one in
SOC systems. Moreover, the exponent strongly depend
the dimension of the SOC system, at least below the up
critical dimension. Finally, as we will show later on, the 1/f a

behavior in SOC models is observed for high frequenc
rather than in the low-frequency range.

Recently, several authors have successfully modifi
originally self-organized critical models to overcome the
problems@12–15#. Despite the diversity of introduced mod
fications ~continuous driving@12#, dissipation@13#, ~quasi-!
one-dimensional geometry@14,15#!, there is one common de
nominator. All these models have a preferred propaga
direction of the avalanches. This is implicitly defined v
specific driving mechanisms. The systems in Refs.@13–15#
are essentially point driven and the system in Ref.@12# is
boundary driven. Without these special driving mechanis
the models are not able to generate 1/f a noise.

In this paper, we will show that such a preferred prop
gation direction is not a necessary condition to obtain 1f a

noise from SOC models. We propose a simple model w
uniform driving able to reproduce the above mentioned ch
acteristics of 1/f a noise.

One of the main features believed to be relevant for
description of 1/f a noise is an activation-deactivation pro
cess@16#. This is, for example, realized in stick-slip mode
6111 ©2000 The American Physical Society
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and, hence, in a model introduced by Olami, Feder a
Christensen~OFC! in 1992 which was intended to mimic th
dynamics of earthquakes@17#. In this model, a real variable
Fi , called stress, is attached to each pointi of a
d-dimensional cubic lattice of sizeN5Ld. In the initial state,
the values ofF are randomly distributed in@0,1# obeying a
uniform distribution. The dynamic evolution is characteriz
by slow driving and fast relaxation. All sitesi 51, . . . ,N are
driven at the same ratev as long asFi,Fc , i.e.,

Fi85v. ~3!

As soon as one of theFi ’s exceeds the critical threshol
valueFc the stressFi is redistributed to the 2d nearest neigh-
bors of sitei,

Fi50, ~4!

Fnn5Fnn1bFi . ~5!

Here,b describes the level of dissipation. The model is co
servative forb51/2d and dissipative for 0<b,1/2d. The
local relaxation continues until allFi ’s are subcritical again
The sequence of discharges triggered in this way is calle
avalanche. If more than one site is supercritical at any ti
the discharges are assumed to happen simultaneously.
the avalanche is over the slow driving@Eq. ~3!# sets in again.
It is important to note that this time scale separation forma
implies v→0.

In two dimensions, the OFC model is considered to b
SOC model provided that open boundary conditions are
plied. However, it is not clear whether this is only true in t
conservative case. Recent investigations seem to imply
in two dimensions the OFC model could only be classified
‘‘almost critical’’ for values of b close to but smaller than
0.25 @18#. This is in contradiction to claims by other group
that the model is self-organized critical even in a cert
range of dissipative values ofb @17,19,20#. However, the
distribution of avalanches with respect to their size obey
power law in the numerically accessible range of syst
sizes even for a small amount of dissipation.

The model, as it stands, is not a good candidate to
scribe 1/f a noise as follows from Fig. 1. There the pow

FIG. 1. Log10-log10 plot of the power spectrum ofX(t) in the
two-dimensional OFC model with open boundaries for differentb ’s
andN52500,Fc51,v50.1. There is clearly no sign of 1/f a noise.
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spectrum of the OFC model is shown for different values
b. The quantity we use as our time signal is the avalan
signal

X~ t !5(
j

gjd~ t2t j !, ~6!

wheregj denotes the size~i.e., the number of topplings! of
the j th avalanche andt j its time of occurrence on the tim
scale of the driving. The explicit definition of a time sca
leads to a time signal with varying temporal distances
tween avalanches. This is in contrast to other signals con
ered so far in the context of SOC and 1/f a noise. Thed
function is motivated by the time scale separation, i.e.,
are not able to observe events on the time scale of the re
ation. This is also reasonable because we are only intere
in the low-frequency range where 1/f a noise is usually
found.

The time signal was recorded after the system h
reached a stationary state as described in Ref.@19#. For non-
zero dissipation, a characteristic frequency occurs in
spectrum as already discussed in Refs.@19,21#. Above and
especially below the characteristic frequency, there is cle
no sign of 1/f a noise. Rather a white noise behavior can
identified. This is not in contradiction to the observations
Refs. @21,22#. In Ref. @21#, a 1/f 2 behavior was found for
frequencies larger than the characteristic frequency. H
ever, a different time signal was used, namely a stress si
which is the stress averaged over the lattice sites as a f
tion of time. In Ref.@22#, a 1/f -type behavior was described
The authors measured the avalanche signal in terms of
time scale of the relaxation, i.e., the time between differ
avalanches was essentially set to zero. Hence, they obse
a high-frequency phenomenon characterizing the inte
temporal development of the avalanches. Therefore, t
findings cannot be considered as 1/f a noise. As we will see
later, our modifications lead to a 1/f decay in the power
spectrum below the characteristic frequency which is
range where 1/f a noise should be looked for.

Our model is basically an extension of the OFC mod
We just add a single new element: The threshold valueFc
becomes a function of space and time mimicking a lo
memory such that each site remembers its~cumulative! his-
tory of discharges. The simplest way to model such
memory is to implement it by a random process. After ea
toppling the respectiveFc( i ) evolves according to a random
walk with the Gaussian step length

Fc,t~ i !5Fc,t21~ i !1sh~ i ,t!, ~7!

where t denotes the number of topplings of sitei and
$h( i ,t)% the sequence of uncorrelated normally distribut
random variables with zero expectation and unit varian
The strength of the white noise source is given bys. To omit
negative threshold values and to confine the random w
we impose reflecting boundaries at 0 and atFu52Fc . As
the initial condition, we useFc,0( i )5Fc .

Computing the power spectrum for our model, we find
clear 1/f a decay over several decades for dissipativeb ’s
both in one and two dimensions~see Figs. 2 and 3!. The
exponent decreases slightly with decreasingb and lies be-
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tween 0.9 and 1.2. As a rule, the range of the 1/f a behavior
also decreases with decreasing dissipation shrinking to
in the conservative limit. In this limit, the crossover leads
a white-noise type of behavior at low frequencies. Our mo
fication also destroys the power-law distribution of the a
lanches in the dissipative case. We find an exponential
tribution instead. Hence, avalanches cannot establish lo
range correlations anymore through the system. This
expected since the responsible mechanism for the critica
‘‘almost critical’’ behavior is marginal synchronizatio
@19,20#. This synchronization is necessarily destroyed
soon as the threshold varies locally~for quenched random
thresholds see Ref.@21#!.

Extensive numerical simulations show that our results
very stable with respect to variations in the parameters. D
ferent values ofs andFu lead to the same results as long
Fu@s@0 ~see Fig. 3!. This is true for different types o
distributions of the random increments$h( i ,t)%, too. Except
for the transients, the behavior of the model is also indep
dent of the initial distribution of theFc,0( i )’s on the interval
@0,Fu#. Our findings do not depend on the choice of boun
ary conditions as well. Periodic and open boundaries g

FIG. 2. Log10-log10 plot of the power spectrum ofX(t) in our
model with open boundaries for differentb ’s ands50.04,d52,N
52500,Fc51,v50.1. The solid line with exponent 1.0 is drawn fo
reference. The dissipative version of the model clearly gener
1/f a noise. Ford51 as well as for larger system sizes, we obta
similar results.

FIG. 3. Log10-log10 plot of the power spectrum ofX(t) in our
model with open boundaries for differents ’s andb50.18,d52,N
52500,Fc51,v50.1. The solid line with exponent 1.0 is drawn fo
reference. Ford51 as well as for larger system sizes, we obta
similar results.
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similar power spectra. Even variations in the dynamic ru
of the present model as realized, for example, in the Fe
Feder model@23# do not alter our results. This points toward
a generic behavior strongly supporting the view in Re
@13,16# that nonlinearity~here, the activation–deactivation o
sites with evolving thresholds! and dissipation are among th
relevant features for generating 1/f a noise.

The explanation of our results is the following: Due to t
absence of critical behavior, only small avalanches occu
our model for dissipativeb ’s. Consequently, one can thin
of S( f ) in a first approximation as the superposition of loc
power spectraS( f ,i ),

S~ f !'(
i 50

N

S~ f ,i !. ~8!

The local signalX(t,i ) generating the respectiveS( f ,i ) is
just the avalanche signal at sitei, i.e., the number of top-
plings of this site during an avalanche at timet. This means
that the sum overi of the X(t,i ) is just X(t).

We have investigated the local power spectra and we
indeed that Eq.~8! is a good approximation. This underline
especially that there is no dependence on the dimensio
the system. It turns out that theS( f ,i ) are almost indepen
dent of i and that they show a 1/f a behavior themselves~see
Fig. 4!.

This result can be understood to a certain extent by m
ping our model to a model introduced by Kaulakys a
Meškauskas@24#. In order to do so, we have to neglect a
interactions between different sites. This means conside
the limit b50 or, equivalently,N51. Additionally, the ran-
dom walk of the threshold is no longer confined by tw
reflecting boundaries. A parabolic potential centered aro
Fc and characterized by the relaxation rateg is used instead,

Fc,t5Fc1DFc,t , ~9!

DFc,t5~12g!DFc,t211sh~t!, ~10!

with DFc,050. Since we considerN51, the time signal
X(t) simplifies considerably:gj51 for all j and, due to the
uniform driving, thet j ’s are given by

es

FIG. 4. Log10-log10 plot of the power spectrum ofX(t,i ) in our
model with open boundaries for different sitesi and b50.22,s
50.04,d52,N52500,Fc51,v50.1. For bulk sites,a51.2 which
is exactly the same as forX(t). For boundary sites,a51.1.
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t j5t j 211
Fc, j

v
, ~11!

Fc, j5Fc, j 212g~Fc, j 212Fc!1sh~ j !, ~12!

with Fc,15Fc /v and t050. Hence,X(t) is already deter-
mined by the series ofDt j5t j2t j 21 which evolve according
to a random walk in a parabolic potential. This correspon
to one particle moving in a closed contour with the period
the drift of the particle around the contour fluctuating abo
the average valueFc /v. The t j ’s are then the transit time
measured at a certain point.

This is indeed the model introduced in Ref.@24#. Kaul-
akys and Mesˇkauskas~KM ! were able to compute analyt
cally the power spectral density and obtained a power
with a51. This behavior can be found in any desirably wi
range of frequencies for a sufficiently smallg. The crucial
point is that the law of large numbers is not valid f
limn→`(1/n)( j 50

n21Dt j ~see the Appendix!.
Their results explain at least qualitatively our findings

the limit b50. However, the exponenta differs. In our
model, we finda50.9160.02 for b50. This is due to an
important difference between the KM model and our mod
As already noted,g has to be small to generate 1/f a noise.
Moreover, the asymptotic distribution of theDt ’s is a Gauss-
ian with mean 0 and variances2/2g. This means that there i
a non-neglectable probability of negativeDt ’s. Conse-
quently, t j 11 can be smaller thant j implying a causality
backwards in time. Hence, the KM model is somewhat
defined. In our model, negativeDt ’s are not possible since
the threshold has to be larger than or equal to zero. This
implies that the 1/f behavior cannot be extended to any d
sirable wide range of frequencies.

In conclusion, we have shown that uniform driven SO
models are generally not able to generate 1/f a noise without
further modifications. The essential ingredient that has to
added is a local memory. This proves that spatially exten
systems based on activation-deactivation processes do
have to be point driven to produce 1/f a noise.

In the present model, the local memory is realized in
easiest possible way by a random walk of the threshold.
showed that the dynamics of the threshold is equivalen
the KM model of transit times under certain assumptions
the limit b→0. This means that our model can be conside
as a physically reasonable generalization of the KM mode
systems with a threshold—even if they are spatially
tended. As a consequence, the present model combine
idea that 1/f a noise may result from the clustering of th
signal pulses @24# with the view that an activation
deactivation process and dissipation are the main feat
relevant for the description of 1/f a noise@13,16#. The robust-
ness of our results strongly supports these views.

As an experimental realization of our model, we sugge
stick-slip system with a Markovian threshold evolution. F
nally, we would like to point out that the present model
similar to the coupled ‘‘integrate-and-fire’’ oscillators stu
ied in the context of neuronal networks and biology. Work
in progress to investigate these connections further
might lead to an explanation for the occurrence of 1/f a noise
in cortical neurons@5#.
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APPENDIX: COMPUTATION OF THE POWER
SPECTRAL DENSITY

Consider a signalX(t)5( jd(t2t j ) as in the KM model.
DefineDt j5t j2t j 21. It follows for the power spectral den
sity @see Eq.~1!#:

S~ f !5 lim
T→`

1

2T U(
j

e2 i2p f t jU2

, ~A1!

5 lim
T→`

1

2T (
j

(
q

ei2p f (t j 1q2t j ), ~A2!

5 lim
T→`

1

2T (
j

(
q

expS i2p f q(
k

~Dtk /q! D .

~A3!

With Ī 5 limT→`(1/2T)( j max2 j min11), this leads to

S~ f !5 Ī K (
q

expS i2p f q(
k

~Dtk /q! D L , ~A4!

where^•••& denotes the average over the ensemble and o
j. Hence, all we need is the probability distributionC of the
1/q(k50

q21Dtk . For the KM model with an average periodDt,
it was shown thatC is a Gaussian with meanDt and vari-
ances2/2g for f .g3/2/ps @24#. Hence, 1/q(kDtk obeys the
same distribution asDt j and does not depend onq. This can
be used to further simplify Eq.~A4!,

S~ f !5 Ī (
q

K expS i2p f q(
k

~Dtk /q! D L . ~A5!

For small enoughf, the summation can be replaced by
integral.@In the KM model, this is valid forf ,2Ag/ps and
f !(2pDt)21.# Changing variables fromq to q85q f and
evaluating the integrals gives

S~ f !5 Ī C~0!/ f . ~A6!

The fact that the probability distribution of (1/q)(k50
q21Dtk

does not depend onq merely means that the law of larg
numbers is not valid due to the correlation between differ
Dtk’s. This is of course different in the case of independe
random variablesDtk , i.e., for g51. In this case the distri-
bution of (1/q)(k50

q21Dtk does depend onq. To be more pre-
cise, the distribution is still a Gaussian with the same me
as before but the variance becomess2/2q. In the limit q
→`, the variance vanishes. A short calculation gives as
pected

S~ f !}
1

f 21 f 0

. ~A7!

This is exactly what happens in the KM model forf
.g3/2/ps @24#.
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To summarize, the crucial ingredient to obtain 1/f noise is
the generation of strong enough correlations between dif
ent Dt j such that 1/q(kDtk obeys the same distribution a
Dtk does. The specific form ofC is not important as long a
C(0)Þ0. In the KM model, the strong correlations a
B
.
d

r-
implemented by a random walk dynamics. In general, ot
stochastic mechanisms are capable of generating such c
lations as well, e.g., shot noise in combination with fast
laxation giving rise to random flows of events witho
memory and Cauchy statistics@25,26#.
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